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Received 11 June 1593 

Abstrad We show thal lhe partition function of the king model in a magnetic field on an 
ztluary lanice in &iuary dimensions is expawed by an e m b l e  average of the parlition 
functions of randam-bond Ising mcdek without field. 

It is well known that the king model in a magnetic field in dimensions larger than 1, as 
well as the zero field model in dimensions d 2 3, has not been solved so far. Here we 
present exact relations between the partition function of the king model in a field and the 
partition functions of random-bond king models in zero field in an arbitrary lattice (defined 
below). We shall use the polygon picture in the low-temperature expansion of the former. 
Then, to go further, we will see that it is necessary to measure the volume of a polygon in 
some way. Introducing auxiliary random (Ising) variables on bonds of the original lattice 
and statistical weights for these variables, we will be able to do this. The final results are 
equations (7) and (10). 

Consider a general lattice (or graph) L in d-dimensions (d = 1,2, . . .); a lattice I: here 
means a collection of (O-dimensional) sites and (Idimensional) bonds; each bond defines 
a connection of two’sites such that the lattice is embedded into a d-dimensional space 
consistently. (The definition here may be loose from a mathematical point of view). The 
square lattice, the triangular lattice, the cubic lattice, and so on, are special examples of the 
lattice thus defined. Assume a cyclic boundary condition. Denote the set of all sites V, the 
set of all bonds E. Set N = flV and M = $B. 

On each site (I E V put an king variable ua E [ 1, -1). We consider the king model 
on this lattice L with a site-dependent magnetic field 

Here the first summation is over all configurations of Ising variables (2N tenns in all), 
KDIg .the interaction strength attached to the bond ((I, p), He the magnetic-field strength 
attached to the site a, and H = (HI, Hz, ... , HN). We allow the K D I ~  and Ha to take 
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complex values. The partition function (1) has a global symmetry &(If) = Z N ( - H )  
where -H = (-HI, -If2,. . . , -HN) .  The low-femperufure expunsion of Z N ( - H )  (cf e.g. 
[I], chapter 6) yields 

where x.8 = yU = e-2H*. We have decomposed the set of configurations as 
C = C+u (-C+) (disjoint,union). For each bond (a, f3) of L there is a (d - l)-dimensional 
hyper-face (a (d - I)-face, for short), denoted (a, 6). transverse to the bond. Let L* be 
a dual lattice of L defined by the collection of all such (d - 1)-faces. A d-dimensional 
hyper-cubic element (a d-cube, for short) of L* is numbered uniquely by the site index a 
of L. A polygon P in ,C* is, by definition, a set of (d - 1)-faces such that every (d - 2)- 
dimensional hyper-edge ((d-Z)-edge, for short) is shared by even numbers (i.e. 0,2,4, . . .) 
of (d - 1)-faces of P. Note that a polygon is not necessarily connected. We shall consider 
only polygons which have definite interior regions; i.e. we neglect polygons that go amss  
the boundary an odd number of times. Let P be the set of all such polygons in L*. For 
a polygon P E 'P, let the same symbol P be the set of all (d - 1)-faces of P, InP (m) 
the set of all d-cubes interior (exterior) of P .  Then, we can write the partition function in 
terms of polygons: 

The definition of the interior of P is not relevant in this expression. The summation in (2) 
can be interpreted as a generating function of the numbers of polygons having (d - 1)-faces 
with weights x.p and interior d-cubes with weights yC (the first term in parentheses). The 
presence of such factors counting the volume of the interior of P (the volume of P, for 
short) complicates calculations of the partition function; here, we think of logy, as the 
volume of a d-cube a. For instance, when L is a two-dimensional square lattice and a 
magneticfreld is absenf, we can convert (2) into a Pfaffian (even for arbitrary x,p's; this is 
a simple corollary of the work in [2]); but, if Ha # 0 we cannot do that. 

In odkr to measure the volume of a polygon, we prepare an auxiliary Ising model. 
On each (d - 1)-face (a. 0) put an king variable E (1, -1). Consider an Ising model 
defined by 

The summation in the exponential is over all d-cubes in L*; the Ising variables round each 
d-cube a interact with strength f3.. It is easy to show that the product of all variables on 
(d - 1)-faces of a polygon P has a statistical average 
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where y, = tanh& (to show this, use the high-temperature expanrim; cf [I], chapter 6). 
In this way we can measure the volume of P using a special king model (3). 

Now ,let us combine the results (4) and (2) to find an alternative expression of 
Z N ( H ) .  Set H, = 0 in the original model (2); but replace each bond strength x,p with 
x,p(r) = rUpx.p. which depends on a random variable rmp E {l, -11: 

Each term in this summation has exactly the same form as the product in the correlator (4). 
Thus, averaging both sides of (5) with weights given in (3). we get 

Comparing. with (2). we find an interesting identity 

where tanh& = e-2H* (= yw); the LHS is the partition function of the original king model 
in a field; the RHS is a statistical average over an ensemble of the partition functions of 
random-bond king models without field: the magnetic field in the original model (1) is 

To be precise, equation (5) differs from the partition function of the mdom-bond king 
1 absorbed in the statistical weights in (3). 

"ode1 in normalization. The precise equation is 

where 

This is an unphysical model in the sense that Kup(r) can have an imaginary part. 

dual of (8): 
It is possible to avoid the use of unphysical interactions. To do so, let us consider the 

The king variables U: live on (d-2)-edges i of L*. Those round each ( d -  I)-face interact. 
The high-temperature expansion yields 
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where z,p(t) = tanh Lup(r). This gives the same polygon-expansion as in (8) if we set 
L u ~ ( s )  = hpL.p. = ljtanh KaP. Comparing with (5). we have 

Z a [ r ]  = ZM-’ 17 e-K* cosh Lap. ??“[TI 
(a.81 

and, therefore, 

This is the alternative to equation (7). 
Let us summarize and comment on the result We found exact relations between the 

king model in a field and random-bond king models in zero field equations (7) and 
(IO); the randomness was introduced in bonds of the original model, and the magnetic 
field was absorbed in the statistical weights of the random variables. If, for example, 
we substitute the transfer-matrix expressions of the parfition functions into the RHS of (7) 
or (10) we obtain an expression of &(If) in terms of transfer matrices which contain 
random variables. Although the relations might be useless to solve the model exactly, 
recognizing such relations would make our understanding of the problem deeper. Finally, 
we remark that the use of the king model (3) is inspired by the work by Wegner 131 (for 
a review, see section V in [4]); Wegner considered an king model with variables on bonds 
of the d-dimensional (regular) lattice, Boltzmann weights given by an interaction-round-a- 
face, e~poooo,  and found asymptotically exact expressions of the minimum area and the 
perimeter of a closed loop in terms of Isiig-model correlation functions. We note that we 
can measure various characteristics of a polygon using suitable Boltzmann weights: for 
instance, replacing the weight in (3) with ex.Y.Pr-@ yields the area of hyper-surface of a 
polygon. 

The auther acknowledges that he enjoyed discussions with Dr Yasuhiro Ohta, and also thanks 
the Reseach Institute for Mathematical Sciences, Kyoto University, for kind hospitality. 
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